\(\int \frac {\cot (e+f x)}{(a+b \tan ^2(e+f x))^{5/2}} \, dx\) [349]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 147 \[ \int \frac {\cot (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{a^{5/2} f}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{(a-b)^{5/2} f}-\frac {b}{3 a (a-b) f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {(2 a-b) b}{a^2 (a-b)^2 f \sqrt {a+b \tan ^2(e+f x)}} \]

[Out]

-arctanh((a+b*tan(f*x+e)^2)^(1/2)/a^(1/2))/a^(5/2)/f+arctanh((a+b*tan(f*x+e)^2)^(1/2)/(a-b)^(1/2))/(a-b)^(5/2)
/f-(2*a-b)*b/a^2/(a-b)^2/f/(a+b*tan(f*x+e)^2)^(1/2)-1/3*b/a/(a-b)/f/(a+b*tan(f*x+e)^2)^(3/2)

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3751, 457, 87, 157, 162, 65, 214} \[ \int \frac {\cot (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{a^{5/2} f}-\frac {b (2 a-b)}{a^2 f (a-b)^2 \sqrt {a+b \tan ^2(e+f x)}}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{f (a-b)^{5/2}}-\frac {b}{3 a f (a-b) \left (a+b \tan ^2(e+f x)\right )^{3/2}} \]

[In]

Int[Cot[e + f*x]/(a + b*Tan[e + f*x]^2)^(5/2),x]

[Out]

-(ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]]/(a^(5/2)*f)) + ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]]/(
(a - b)^(5/2)*f) - b/(3*a*(a - b)*f*(a + b*Tan[e + f*x]^2)^(3/2)) - ((2*a - b)*b)/(a^2*(a - b)^2*f*Sqrt[a + b*
Tan[e + f*x]^2])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 87

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[f*((e + f*x)^(p +
 1)/((p + 1)*(b*e - a*f)*(d*e - c*f))), x] + Dist[1/((b*e - a*f)*(d*e - c*f)), Int[(b*d*e - b*c*f - a*d*f - b*
d*f*x)*((e + f*x)^(p + 1)/((a + b*x)*(c + d*x))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[p, -1]

Rule 157

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{x \left (1+x^2\right ) \left (a+b x^2\right )^{5/2}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {\text {Subst}\left (\int \frac {1}{x (1+x) (a+b x)^{5/2}} \, dx,x,\tan ^2(e+f x)\right )}{2 f} \\ & = -\frac {b}{3 a (a-b) f \left (a+b \tan ^2(e+f x)\right )^{3/2}}+\frac {\text {Subst}\left (\int \frac {a-b-b x}{x (1+x) (a+b x)^{3/2}} \, dx,x,\tan ^2(e+f x)\right )}{2 a (a-b) f} \\ & = -\frac {b}{3 a (a-b) f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {(2 a-b) b}{a^2 (a-b)^2 f \sqrt {a+b \tan ^2(e+f x)}}-\frac {\text {Subst}\left (\int \frac {-\frac {1}{2} (a-b)^2+\frac {1}{2} (2 a-b) b x}{x (1+x) \sqrt {a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{a^2 (a-b)^2 f} \\ & = -\frac {b}{3 a (a-b) f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {(2 a-b) b}{a^2 (a-b)^2 f \sqrt {a+b \tan ^2(e+f x)}}+\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 a^2 f}-\frac {\text {Subst}\left (\int \frac {1}{(1+x) \sqrt {a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 (a-b)^2 f} \\ & = -\frac {b}{3 a (a-b) f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {(2 a-b) b}{a^2 (a-b)^2 f \sqrt {a+b \tan ^2(e+f x)}}+\frac {\text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tan ^2(e+f x)}\right )}{a^2 b f}-\frac {\text {Subst}\left (\int \frac {1}{1-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tan ^2(e+f x)}\right )}{(a-b)^2 b f} \\ & = -\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{a^{5/2} f}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{(a-b)^{5/2} f}-\frac {b}{3 a (a-b) f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {(2 a-b) b}{a^2 (a-b)^2 f \sqrt {a+b \tan ^2(e+f x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.42 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.64 \[ \int \frac {\cot (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\frac {-a \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},\frac {a+b \tan ^2(e+f x)}{a-b}\right )+(a-b) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},1+\frac {b \tan ^2(e+f x)}{a}\right )}{3 a (a-b) f \left (a+b \tan ^2(e+f x)\right )^{3/2}} \]

[In]

Integrate[Cot[e + f*x]/(a + b*Tan[e + f*x]^2)^(5/2),x]

[Out]

(-(a*Hypergeometric2F1[-3/2, 1, -1/2, (a + b*Tan[e + f*x]^2)/(a - b)]) + (a - b)*Hypergeometric2F1[-3/2, 1, -1
/2, 1 + (b*Tan[e + f*x]^2)/a])/(3*a*(a - b)*f*(a + b*Tan[e + f*x]^2)^(3/2))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(216654\) vs. \(2(129)=258\).

Time = 5.71 (sec) , antiderivative size = 216655, normalized size of antiderivative = 1473.84

method result size
default \(\text {Expression too large to display}\) \(216655\)

[In]

int(cot(f*x+e)/(a+b*tan(f*x+e)^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 392 vs. \(2 (129) = 258\).

Time = 0.34 (sec) , antiderivative size = 1649, normalized size of antiderivative = 11.22 \[ \int \frac {\cot (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\text {Too large to display} \]

[In]

integrate(cot(f*x+e)/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="fricas")

[Out]

[1/6*(3*(a^3*b^2*tan(f*x + e)^4 + 2*a^4*b*tan(f*x + e)^2 + a^5)*sqrt(a - b)*log((b*tan(f*x + e)^2 + 2*sqrt(b*t
an(f*x + e)^2 + a)*sqrt(a - b) + 2*a - b)/(tan(f*x + e)^2 + 1)) + 3*(a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*b^3 + (a^
3*b^2 - 3*a^2*b^3 + 3*a*b^4 - b^5)*tan(f*x + e)^4 + 2*(a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*tan(f*x + e)^2)*
sqrt(a)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2) - 2*(7*a^4*b - 11*
a^3*b^2 + 4*a^2*b^3 + 3*(2*a^3*b^2 - 3*a^2*b^3 + a*b^4)*tan(f*x + e)^2)*sqrt(b*tan(f*x + e)^2 + a))/((a^6*b^2
- 3*a^5*b^3 + 3*a^4*b^4 - a^3*b^5)*f*tan(f*x + e)^4 + 2*(a^7*b - 3*a^6*b^2 + 3*a^5*b^3 - a^4*b^4)*f*tan(f*x +
e)^2 + (a^8 - 3*a^7*b + 3*a^6*b^2 - a^5*b^3)*f), 1/6*(6*(a^3*b^2*tan(f*x + e)^4 + 2*a^4*b*tan(f*x + e)^2 + a^5
)*sqrt(-a + b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)/(a - b)) + 3*(a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*b
^3 + (a^3*b^2 - 3*a^2*b^3 + 3*a*b^4 - b^5)*tan(f*x + e)^4 + 2*(a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*tan(f*x
+ e)^2)*sqrt(a)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2) - 2*(7*a^4
*b - 11*a^3*b^2 + 4*a^2*b^3 + 3*(2*a^3*b^2 - 3*a^2*b^3 + a*b^4)*tan(f*x + e)^2)*sqrt(b*tan(f*x + e)^2 + a))/((
a^6*b^2 - 3*a^5*b^3 + 3*a^4*b^4 - a^3*b^5)*f*tan(f*x + e)^4 + 2*(a^7*b - 3*a^6*b^2 + 3*a^5*b^3 - a^4*b^4)*f*ta
n(f*x + e)^2 + (a^8 - 3*a^7*b + 3*a^6*b^2 - a^5*b^3)*f), 1/6*(6*(a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*b^3 + (a^3*b^
2 - 3*a^2*b^3 + 3*a*b^4 - b^5)*tan(f*x + e)^4 + 2*(a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*tan(f*x + e)^2)*sqrt
(-a)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a)/a) + 3*(a^3*b^2*tan(f*x + e)^4 + 2*a^4*b*tan(f*x + e)^2 + a^5)
*sqrt(a - b)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 2*a - b)/(tan(f*x + e)^2 + 1))
 - 2*(7*a^4*b - 11*a^3*b^2 + 4*a^2*b^3 + 3*(2*a^3*b^2 - 3*a^2*b^3 + a*b^4)*tan(f*x + e)^2)*sqrt(b*tan(f*x + e)
^2 + a))/((a^6*b^2 - 3*a^5*b^3 + 3*a^4*b^4 - a^3*b^5)*f*tan(f*x + e)^4 + 2*(a^7*b - 3*a^6*b^2 + 3*a^5*b^3 - a^
4*b^4)*f*tan(f*x + e)^2 + (a^8 - 3*a^7*b + 3*a^6*b^2 - a^5*b^3)*f), 1/3*(3*(a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*b^
3 + (a^3*b^2 - 3*a^2*b^3 + 3*a*b^4 - b^5)*tan(f*x + e)^4 + 2*(a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*tan(f*x +
 e)^2)*sqrt(-a)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a)/a) + 3*(a^3*b^2*tan(f*x + e)^4 + 2*a^4*b*tan(f*x +
e)^2 + a^5)*sqrt(-a + b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)/(a - b)) - (7*a^4*b - 11*a^3*b^2 + 4*
a^2*b^3 + 3*(2*a^3*b^2 - 3*a^2*b^3 + a*b^4)*tan(f*x + e)^2)*sqrt(b*tan(f*x + e)^2 + a))/((a^6*b^2 - 3*a^5*b^3
+ 3*a^4*b^4 - a^3*b^5)*f*tan(f*x + e)^4 + 2*(a^7*b - 3*a^6*b^2 + 3*a^5*b^3 - a^4*b^4)*f*tan(f*x + e)^2 + (a^8
- 3*a^7*b + 3*a^6*b^2 - a^5*b^3)*f)]

Sympy [F]

\[ \int \frac {\cot (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\cot {\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(cot(f*x+e)/(a+b*tan(f*x+e)**2)**(5/2),x)

[Out]

Integral(cot(e + f*x)/(a + b*tan(e + f*x)**2)**(5/2), x)

Maxima [F]

\[ \int \frac {\cot (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\cot \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cot(f*x+e)/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="maxima")

[Out]

integrate(cot(f*x + e)/(b*tan(f*x + e)^2 + a)^(5/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\cot (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(cot(f*x+e)/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 12.65 (sec) , antiderivative size = 2788, normalized size of antiderivative = 18.97 \[ \int \frac {\cot (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\text {Too large to display} \]

[In]

int(cot(e + f*x)/(a + b*tan(e + f*x)^2)^(5/2),x)

[Out]

(b/(3*(a*b - a^2)) - (b*(a + b*tan(e + f*x)^2)*(2*a - b))/(a*b - a^2)^2)/(f*(a + b*tan(e + f*x)^2)^(3/2)) - at
anh((2*a^5*b^13*f^2*(a + b*tan(e + f*x)^2)^(1/2))/((a^5)^(1/2)*(2*a^3*b^13*f^2 - 22*a^4*b^12*f^2 + 110*a^5*b^1
1*f^2 - 330*a^6*b^10*f^2 + 660*a^7*b^9*f^2 - 922*a^8*b^8*f^2 + 912*a^9*b^7*f^2 - 630*a^10*b^6*f^2 + 290*a^11*b
^5*f^2 - 80*a^12*b^4*f^2 + 10*a^13*b^3*f^2)) - (22*a^6*b^12*f^2*(a + b*tan(e + f*x)^2)^(1/2))/((a^5)^(1/2)*(2*
a^3*b^13*f^2 - 22*a^4*b^12*f^2 + 110*a^5*b^11*f^2 - 330*a^6*b^10*f^2 + 660*a^7*b^9*f^2 - 922*a^8*b^8*f^2 + 912
*a^9*b^7*f^2 - 630*a^10*b^6*f^2 + 290*a^11*b^5*f^2 - 80*a^12*b^4*f^2 + 10*a^13*b^3*f^2)) + (110*a^7*b^11*f^2*(
a + b*tan(e + f*x)^2)^(1/2))/((a^5)^(1/2)*(2*a^3*b^13*f^2 - 22*a^4*b^12*f^2 + 110*a^5*b^11*f^2 - 330*a^6*b^10*
f^2 + 660*a^7*b^9*f^2 - 922*a^8*b^8*f^2 + 912*a^9*b^7*f^2 - 630*a^10*b^6*f^2 + 290*a^11*b^5*f^2 - 80*a^12*b^4*
f^2 + 10*a^13*b^3*f^2)) - (330*a^8*b^10*f^2*(a + b*tan(e + f*x)^2)^(1/2))/((a^5)^(1/2)*(2*a^3*b^13*f^2 - 22*a^
4*b^12*f^2 + 110*a^5*b^11*f^2 - 330*a^6*b^10*f^2 + 660*a^7*b^9*f^2 - 922*a^8*b^8*f^2 + 912*a^9*b^7*f^2 - 630*a
^10*b^6*f^2 + 290*a^11*b^5*f^2 - 80*a^12*b^4*f^2 + 10*a^13*b^3*f^2)) + (660*a^9*b^9*f^2*(a + b*tan(e + f*x)^2)
^(1/2))/((a^5)^(1/2)*(2*a^3*b^13*f^2 - 22*a^4*b^12*f^2 + 110*a^5*b^11*f^2 - 330*a^6*b^10*f^2 + 660*a^7*b^9*f^2
 - 922*a^8*b^8*f^2 + 912*a^9*b^7*f^2 - 630*a^10*b^6*f^2 + 290*a^11*b^5*f^2 - 80*a^12*b^4*f^2 + 10*a^13*b^3*f^2
)) - (922*a^10*b^8*f^2*(a + b*tan(e + f*x)^2)^(1/2))/((a^5)^(1/2)*(2*a^3*b^13*f^2 - 22*a^4*b^12*f^2 + 110*a^5*
b^11*f^2 - 330*a^6*b^10*f^2 + 660*a^7*b^9*f^2 - 922*a^8*b^8*f^2 + 912*a^9*b^7*f^2 - 630*a^10*b^6*f^2 + 290*a^1
1*b^5*f^2 - 80*a^12*b^4*f^2 + 10*a^13*b^3*f^2)) + (912*a^11*b^7*f^2*(a + b*tan(e + f*x)^2)^(1/2))/((a^5)^(1/2)
*(2*a^3*b^13*f^2 - 22*a^4*b^12*f^2 + 110*a^5*b^11*f^2 - 330*a^6*b^10*f^2 + 660*a^7*b^9*f^2 - 922*a^8*b^8*f^2 +
 912*a^9*b^7*f^2 - 630*a^10*b^6*f^2 + 290*a^11*b^5*f^2 - 80*a^12*b^4*f^2 + 10*a^13*b^3*f^2)) - (630*a^12*b^6*f
^2*(a + b*tan(e + f*x)^2)^(1/2))/((a^5)^(1/2)*(2*a^3*b^13*f^2 - 22*a^4*b^12*f^2 + 110*a^5*b^11*f^2 - 330*a^6*b
^10*f^2 + 660*a^7*b^9*f^2 - 922*a^8*b^8*f^2 + 912*a^9*b^7*f^2 - 630*a^10*b^6*f^2 + 290*a^11*b^5*f^2 - 80*a^12*
b^4*f^2 + 10*a^13*b^3*f^2)) + (290*a^13*b^5*f^2*(a + b*tan(e + f*x)^2)^(1/2))/((a^5)^(1/2)*(2*a^3*b^13*f^2 - 2
2*a^4*b^12*f^2 + 110*a^5*b^11*f^2 - 330*a^6*b^10*f^2 + 660*a^7*b^9*f^2 - 922*a^8*b^8*f^2 + 912*a^9*b^7*f^2 - 6
30*a^10*b^6*f^2 + 290*a^11*b^5*f^2 - 80*a^12*b^4*f^2 + 10*a^13*b^3*f^2)) - (80*a^14*b^4*f^2*(a + b*tan(e + f*x
)^2)^(1/2))/((a^5)^(1/2)*(2*a^3*b^13*f^2 - 22*a^4*b^12*f^2 + 110*a^5*b^11*f^2 - 330*a^6*b^10*f^2 + 660*a^7*b^9
*f^2 - 922*a^8*b^8*f^2 + 912*a^9*b^7*f^2 - 630*a^10*b^6*f^2 + 290*a^11*b^5*f^2 - 80*a^12*b^4*f^2 + 10*a^13*b^3
*f^2)) + (10*a^15*b^3*f^2*(a + b*tan(e + f*x)^2)^(1/2))/((a^5)^(1/2)*(2*a^3*b^13*f^2 - 22*a^4*b^12*f^2 + 110*a
^5*b^11*f^2 - 330*a^6*b^10*f^2 + 660*a^7*b^9*f^2 - 922*a^8*b^8*f^2 + 912*a^9*b^7*f^2 - 630*a^10*b^6*f^2 + 290*
a^11*b^5*f^2 - 80*a^12*b^4*f^2 + 10*a^13*b^3*f^2)))/(f*(a^5)^(1/2)) - (atan((a^12*f^3*(a + b*tan(e + f*x)^2)^(
1/2)*2i - a^7*f*(a + b*tan(e + f*x)^2)^(1/2)*(a^5*f^2 - b^5*f^2 + 5*a*b^4*f^2 - 5*a^4*b*f^2 - 10*a^2*b^3*f^2 +
 10*a^3*b^2*f^2)*2i + b^7*f*(a + b*tan(e + f*x)^2)^(1/2)*(a^5*f^2 - b^5*f^2 + 5*a*b^4*f^2 - 5*a^4*b*f^2 - 10*a
^2*b^3*f^2 + 10*a^3*b^2*f^2)*1i + a^4*b^8*f^3*(a + b*tan(e + f*x)^2)^(1/2)*1i - a^5*b^7*f^3*(a + b*tan(e + f*x
)^2)^(1/2)*9i + a^6*b^6*f^3*(a + b*tan(e + f*x)^2)^(1/2)*35i - a^7*b^5*f^3*(a + b*tan(e + f*x)^2)^(1/2)*77i +
a^8*b^4*f^3*(a + b*tan(e + f*x)^2)^(1/2)*105i - a^9*b^3*f^3*(a + b*tan(e + f*x)^2)^(1/2)*91i + a^10*b^2*f^3*(a
 + b*tan(e + f*x)^2)^(1/2)*49i - a^11*b*f^3*(a + b*tan(e + f*x)^2)^(1/2)*15i + a^2*b^5*f*(a + b*tan(e + f*x)^2
)^(1/2)*(a^5*f^2 - b^5*f^2 + 5*a*b^4*f^2 - 5*a^4*b*f^2 - 10*a^2*b^3*f^2 + 10*a^3*b^2*f^2)*21i - a^3*b^4*f*(a +
 b*tan(e + f*x)^2)^(1/2)*(a^5*f^2 - b^5*f^2 + 5*a*b^4*f^2 - 5*a^4*b*f^2 - 10*a^2*b^3*f^2 + 10*a^3*b^2*f^2)*35i
 + a^4*b^3*f*(a + b*tan(e + f*x)^2)^(1/2)*(a^5*f^2 - b^5*f^2 + 5*a*b^4*f^2 - 5*a^4*b*f^2 - 10*a^2*b^3*f^2 + 10
*a^3*b^2*f^2)*36i - a^5*b^2*f*(a + b*tan(e + f*x)^2)^(1/2)*(a^5*f^2 - b^5*f^2 + 5*a*b^4*f^2 - 5*a^4*b*f^2 - 10
*a^2*b^3*f^2 + 10*a^3*b^2*f^2)*24i - a*b^6*f*(a + b*tan(e + f*x)^2)^(1/2)*(a^5*f^2 - b^5*f^2 + 5*a*b^4*f^2 - 5
*a^4*b*f^2 - 10*a^2*b^3*f^2 + 10*a^3*b^2*f^2)*7i + a^6*b*f*(a + b*tan(e + f*x)^2)^(1/2)*(a^5*f^2 - b^5*f^2 + 5
*a*b^4*f^2 - 5*a^4*b*f^2 - 10*a^2*b^3*f^2 + 10*a^3*b^2*f^2)*10i)/((5*a^4*b - 5*a*b^4 + b^5 + 10*a^2*b^3 - 10*a
^3*b^2)*(a^5*f^2 - b^5*f^2 + 5*a*b^4*f^2 - 5*a^4*b*f^2 - 10*a^2*b^3*f^2 + 10*a^3*b^2*f^2)^(3/2)))*1i)/(a^5*f^2
 - b^5*f^2 + 5*a*b^4*f^2 - 5*a^4*b*f^2 - 10*a^2*b^3*f^2 + 10*a^3*b^2*f^2)^(1/2)